Distinct mechanisms of form-from-motion perception in human extrastriate cortex.

نویسندگان

  • O Blanke
  • A Brooks
  • M Mercier
  • L Spinelli
  • M Adriani
  • L Lavanchy
  • A B Safran
  • T Landis
چکیده

The exquisite sensitivity of the human visual system to form-from-motion (FfM) cues is well documented. However, identifying the neural correlates of this sensitivity has proven difficult, particularly determining the respective contributions of different motion areas in extrastriate visual cortex. Here we measured visual FfM perception and more elementary visual motion (VM) perception in a group of 32 patients suffering from acute posterior brain damage, and performed MRI-based lesion analysis. Our results suggest that severe FfM perception deficits without an associated deficit of VM perception are due to damage to ventral occipito-temporal cortex (VOT), whereas associated deficits of FfM and VM perception are due to damage either in proximity to area MT+/V5 or an area including lateral occipital complex (LOC) and VOT. These data suggest the existence of at least three functionally and anatomically distinct regions in human visual cortex that process FfM signals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reorganization of Global Form and Motion Processing during Human Visual Development

The functional selectivity of human primary visual cortex (V1) for orientation and motion direction is established by around 3 months of age [1-3], but there have been few studies of the development of extrastriate visual areas that integrate outputs from V1 [4-8]. We investigated sensitivity and topographical organization for global form and motion with high-density visual event-related potent...

متن کامل

Central neural mechanisms for detecting second-order motion.

Single-unit neurophysiology and human psychophysics have begun to reveal distinct neural mechanisms for processing visual stimuli defined by differences in contrast or texture (second-order motion) rather than by luminance (first-order motion). This processing begins in early visual cortical areas, with subsequent extrastriate specialization, and may provide a basis for form-cue invariant analy...

متن کامل

A double dissociation between striate and extrastriate visual cortex for pattern motion perception revealed using rTMS.

The neural mechanisms underlying the integration and segregation of motion signals are often studied using plaid stimuli. These stimuli consist of two spatially coincident dynamic gratings of differing orientations, which are either perceived to move in two unique directions or are integrated by the visual system to elicit the percept of a checkerboard moving in a single direction. Computations...

متن کامل

Distinct neural mechanisms for body form and body motion discriminations.

Actions can be understood based on form cues (e.g., static body posture) as well as motion cues (e.g., gait patterns). A fundamental debate centers on the question of whether the functional and neural mechanisms processing these two types of cues are dissociable. Here, using fMRI, psychophysics, and transcranial magnetic stimulation (TMS), all within the same human participants, we show that me...

متن کامل

Blindness to form from motion despite intact static form perception and motion detection.

We studied the motion perception, including form and meaning generated by motion, in a hemianopic patient who also had visual perceptual impairments in her seeing hemifield as a result of a lesion in ventral extrastriate cortex. She was unable to recognise 2- or 3-dimensional forms, and even borders, generated by motion alone, failed to recognise mimed actions or the Johannson 'biological motio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuropsychologia

دوره 45 4  شماره 

صفحات  -

تاریخ انتشار 2007